

APA464Hu01 100µg

Active Mineralocorticoid Receptor (MR)

Organism Species: *Homo sapiens* (Human)

Instruction manual

FOR RESEARCH USE ONLY

NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES

13th Edition (Revised in Aug, 2023)

[PROPERTIES]

Source: Prokaryotic expression.

Host: *E. coli*

Residues: Val739~Lys984

Tags: N-terminal His and GST Tag

Purity: >80%

Endotoxin Level: <1.0EU per 1µg (determined by the LAL method).

Buffer Formulation: PBS, pH7.4, containing 0.01% Sarcosyl, 5%Trehalose .

Original Concentration: 200µg/mL

Applications: Activity Assays.

(May be suitable for use in other assays to be determined by the end user.)

Predicted isoelectric point: 6.6

Predicted Molecular Mass: 58.7kDa

Accurate Molecular Mass: 59kDa as determined by SDS-PAGE reducing conditions.

[USAGE]

Reconstitute in 10mM PBS (pH7.4) to a concentration of 0.1-1.0 mg/mL. Do not vortex.

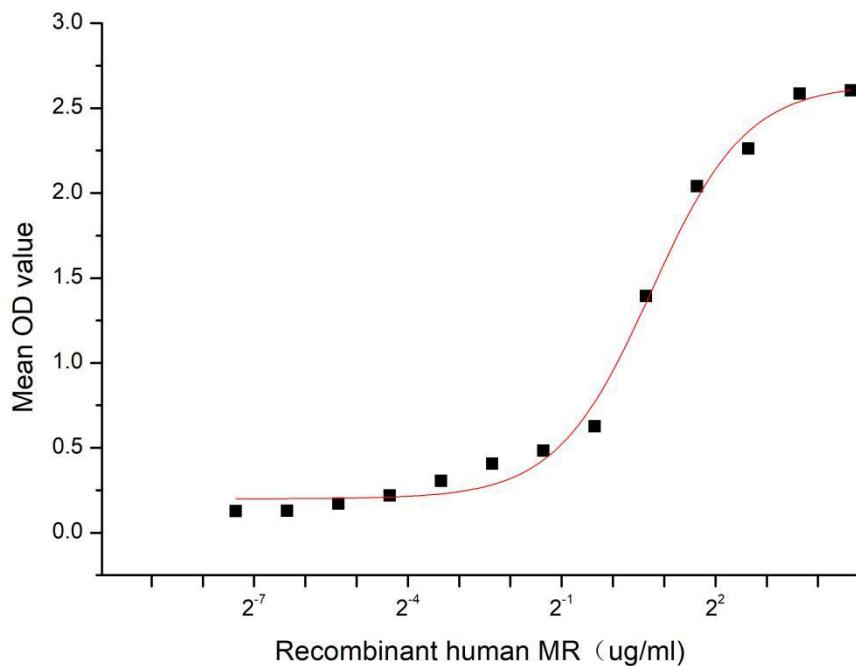
[STORAGE AND STABILITY]

Storage: Avoid repeated freeze/thaw cycles.

Store at 2-8°C for one month.

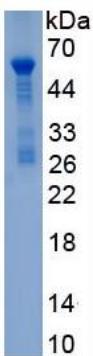
Aliquot and store at -80°C for 12 months.

Stability Test: The thermal stability is described by the loss rate. The loss rate was determined by accelerated thermal degradation test, that is, incubate the protein at 37°C for 48h, and no obvious degradation and precipitation were observed. The loss rate is less than 5% within the expiration date under appropriate storage condition.


[SEQUENCE]

VM VLENIEPEIV
YAGYDSSKPD TAENLLSTLN RLAGKQMIQV VKWAKVLPGF KNLPLEDQIT
LIQYSWMCLS SFALSWRSYK HTNSQFLYFA PDLVFNEEKM HQSAMYELCQ
GMHQISLQFV RLQLTFEETY IMKVLLLLST IPKDGLKSQA AFEEMRTNYI
KELRKMVTKC PNNSGQSWQR FYQLTKLLDS MHDLVSDLLE FCFYTFRESH
ALKVEFPAML VEIISDQLPK VESGNAKPLY FHRK

[ACTIVITY]


The Mineralocorticoid Receptor (MR) is a ligand-activated transcription factor that mediates aldosterone signaling, regulating electrolyte balance and blood pressure in the kidney. Beyond its classical role, MR influences inflammation, fibrosis, and cardiovascular pathophysiology. As a member of the nuclear receptor superfamily, MR requires chaperone proteins for proper folding and function. Heat Shock Protein 90kDa Alpha B1 (HSP90aB1) is a molecular chaperone that stabilizes MR in its inactive state, facilitating hormone binding and nuclear translocation upon activation. Thus a functional ELISA assay was conducted to detect the interaction of recombinant human MR and recombinant human HSP90aB1. Briefly, MR was diluted serially in PBS with 0.01% BSA (pH 7.4). Duplicate samples of 100 μ l were then transferred to HSP90aB1-coated microtiter wells and incubated for 1h at 37 °C. Wells were washed with PBST and incubated for 1h with anti-MR pAb, then aspirated and washed 3 times. After incubation with HRP labelled secondary antibody for 1h at 37 °C, wells were aspirated and washed 5 times. With the addition of substrate solution, wells were incubated 15-25 minutes at 37 °C. Finally, add 50 μ L stop solution to the wells and read at 450/630nm immediately. The binding activity of recombinant human MR and recombinant human HSP90aB1

was shown in Figure 1, the EC50 for this effect is 1.68ug/mL.

Figure 1. The binding activity of recombinant human MR and human HSP90aB1

[IDENTIFICATION]

Figure 3. SDS-PAGE

Sample: Active recombinant MR, Human

[IMPORTANT NOTE]

The kit is designed for research use only, we will not be responsible for any issue if the kit was used in clinical diagnostic or any other procedures.