www.uscnk. us; www.uscnk.cn; www.uscnk.com
C91201Mu 96 Tests
Chemiluminescent immunoassay Kit
For Contactin 1 (CNTN1)
Organism: Mus musculus (Mouse)
Instruction manual
FOR IN VITRO USE AND RESEARCH USE ONLY
NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES

2th Edition (Revised in September, 2011)

[INTENDED USE]

The Chemiluminescent Immunoassay kit is designed for the in vitro sensitive quantitative measurement of CNTN1 in mouse tissue homogenates and other biological fluids.

[REAGENTS AND MATERIALS PROVIDED]

Reagents	Quantity	Reagents	Quantity
Pre-coated, ready to use 96-well strip plate	1	Plate sealer for 96 wells	4
Standard (lyophilized)	2	Standard Diluent	$1 \times 20 \mathrm{~mL}$
Detection Reagent A (green)	$1 \times 120 \mu \mathrm{~L}$	Assay Diluent A $2 \times$ concentrate $)$	$1 \times 6 \mathrm{~mL}$
Detection Reagent B (red)	$1 \times 120 \mu \mathrm{~L}$	Assay Diluent B $(2 \times$ concentrate $)$	$1 \times 6 \mathrm{~mL}$
Substrate A	$1 \times 10 \mathrm{~mL}$	Substrate B	$1 \times 2 \mathrm{~mL}$
Wash Buffer $(30 \times$ concentrate $)$	$1 \times 20 \mathrm{~mL}$	Instruction manual	1

[MATERIALS REQUIRED BUT NOT SUPPLIED]

1. Luminometer capable of reading 96 -well microplates with the following parameters:
lag time 30.0 secs ; read time $1.0 \mathrm{sec} / \mathrm{well}$.
2. Precision single or multi-channel pipettes and pipette tips with disposable tips.
3. Eppendorf Tubes for diluting samples.
4. Deionized or distilled water.
5. Absorbent paper for blotting the microtiter plate.
6. Container for Wash Solution

[STORAGE OF THE KITS]

1. For unopened kit: All the reagents should be kept according to the labels on vials. The Standard, Detection Reagent A, Detection Reagent B and the $\mathbf{9 6}$-well strip plate should be stored at $-20^{\circ} \mathrm{C}$ upon receipt while the others should be at $4^{\circ} \mathrm{C}$.
2. For opened kit: When the kit is opened, the remaining reagents still need to be stored according to the above storage condition. Besides, please return the unused wells to the foil pouch containing the desiccant pack, and reseal along entire edge of zip-seal.

Note:

It is highly recommended to use the remaining reagents within 1 month provided this is within the expiration date of the kit.

[SAMPLE COLLECTION AND STORAGE]

Tissue homogenates - The preparation of tissue homogenates will vary depending upon tissue type. For this assay, tissues were rinsed in ice-cold PBS($0.02 \mathrm{~mol} / \mathrm{L}, \mathrm{pH} 7.0-7.2$) to remove excess blood thoroughly and weighed before homogenization. Minced the tissues to small pieces and homogenized them in $5-10 \mathrm{~mL}$ of PBS with a glass homogenizer on ice(Micro Tissue Grinders woks, too). The resulting suspension was sonicated with an ultrasonic cell disrupter or subjected to two freeze-thaw cycles to further break the cell membranes. After that, the homogenates were centrifugated for 5 minutes at $5000 \times \mathrm{g}$. Remove the supernate and assay immediately or aliquot and store at $\leqslant-20^{\circ} \mathrm{C}$.
Other biological fluids - Centrifuge samples for 20 minutes at $1000 \times$ g. Remove particulates and assay immediately or store samples in aliquot at $-20^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$. Avoid repeated freeze/thaw cycles.

Note:

1. Samples to be used within 5 days may be stored at $4^{\circ} \mathrm{C}$, otherwise samples must be stored at $-20^{\circ} \mathrm{C}(\leqslant 1$ month) or $-80^{\circ} \mathrm{C}$ ($\leqslant 2$ months) to avoid loss of bioactivity and contamination.
2. Sample hemolysis will influence the result, so hemolytic specimen can not be detected.
3. When performing the assay, bring samples to room temperature.

[REAGENT PREPARATION]

1. Bring all kit components and samples to room temperature $\left(18-25^{\circ} \mathrm{C}\right)$ before use.
2. Standard - Reconstitute the Standard with 1.0 mL of Standard Diluent, kept for 10 minutes at room temperature, shake gently(not to foam). The concentration of the standard in the stock solution is $40 \mathrm{ng} / \mathrm{mL}$. Please firstly dilute the stock solution to $10 \mathrm{ng} / \mathrm{mL}$ and the diluted standard serves as the highest standard ($10 \mathrm{ng} / \mathrm{mL}$). Then prepare 7 tubes containing 0.5 ml Standard Diluent and use the diluted standard to produce a double dilution series according to the picture shown below. Mix each tube thoroughly before the next transfer. Set up 7 points of diluted standard such as $10 \mathrm{ng} / \mathrm{mL}, 5 \mathrm{ng} / \mathrm{mL}, 2.5 \mathrm{ng} / \mathrm{mL}, 1.25 \mathrm{ng} / \mathrm{mL}$, $0.625 \mathrm{ng} / \mathrm{mL}, 0.312 \mathrm{ng} / \mathrm{mL}, 0.156 \mathrm{ng} / \mathrm{mL}$, and the last EP tubes with Standard Diluent is the blank as Ong/mL.

3. Assay Diluent A and Assay Diluent B - Dilute 6 mL of Assay Diluent A or B Concentrate($2 \times$) with 6 mL of deionized or distilled water to prepare 12 mL of Assay Diluent A or B . The prepared working dilution can't be frozen.(In fact, more than 6 mL Assay Diluent A and Assay Diluent B are contained in the bottles. Therefore, in every test, please precisely pipette required amount of Diluent and make double dilution in a new container. The prepared working dilution can't be frozen.)
4. Detection Reagent A and Detection Reagent B - Briefly spin or centrifuge the stock Detection A and

Detection B before use. Dilute to the working concentration with working Assay Diluent A or B, respectively (1:100).
5. Wash Solution - Dilute 20 mL of Wash Solution concentrate (30×) with 580 mL of deionized or distilled water to prepare 600 mL of Wash Solution (1×).
6. Substrate working Solution - Mix the substrate A and B by the ratio of $99: 1$ to make the substrate working solution. Mix thoroughly. For example, prepare $1,000 \mu \mathrm{~L}$ Substrate working Solution with $990 \mu \mathrm{~L}$ Substrate $A+10 \mu L$ Substrate B.

Note:

1. Making serial dilution in the wells directly is not permitted.
2. Prepare standard within 15 minutes before assay. Please do not dissolve the reagents at $37^{\circ} \mathrm{C}$ directly.
3. Please carefully reconstitute Standards or working Detection Reagent A and B according to the instruction, and avoid foaming and mix gently until the crystals are completely dissolved. To minimize imprecision caused by pipetting, use small volumes and ensure that pipettors are calibrated. It is recommended to suck more than $10 \mu \mathrm{~L}$ for once pipetting.
4. The reconstituted Standards, Detection Reagent A and Detection Reagent B can be used only once.
5. Prepare Substrate working Solution within 15 minutes before assay.
6. If crystals have formed in the Wash Solution concentrate ($30 \times$), warm to room temperature and mix gently until the crystals are completely dissolved.
7. Contaminated water or container for reagent preparation will influence the detection result.

[SAMPLE PREPARATION]

1. Uscn, Inc. is only responsible for the kit itself, but not for the samples consumed during the assay. The user should calculate the possible amount of the samples used in the whole test. Please reserve sufficient samples in advance.
2. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their particular experiments.
3. If the samples are not indicated in the manual, a preliminary experiment to determine the validity of the kit is necessary.
4. Tissue or cell extraction samples prepared by chemical lysis buffer may cause unexpected CLIA results due to the impacts of certain chemicals.
5. Due to the possibility of mismatching between antigen from other origin and antibody used in our kits (e.g., antibody targets conformational epitope rather than linear epitope), some native or recombinant proteins from other manufacturers may not be recognized by our products.
6. Influenced by the factors including cell viability, cell number or sampling time, samples from cell culture supernatant may not be detected by the kit.
7. Fresh samples without long time storage is recommended for the test. Otherwise, protein degradation and denaturalization may occur in those samples and finally lead to wrong results.

[ASSAY PROCEDURE]

1. Determine wells for diluted standard, blank and sample. Prepare 7 wells for standard, 1 well for blank. Add $100 \mu \mathrm{~L}$ each of dilutions of standard (read Reagent Preparation), blank and samples into the appropriate wells. Cover with the Plate sealer. Incubate for 2 hours at $37^{\circ} \mathrm{C}$.
2. Remove the liquid of each well, don't wash.
3. Add $100 \mu \mathrm{~L}$ of Detection Reagent A working solution to each well. Incubate for 1 hour at $37^{\circ} \mathrm{C}$ after covering it with the Plate sealer.
4. Aspirate the solution and wash with $350 \mu \mathrm{~L}$ of $1 \times$ Wash Solution to each well using a squirt bottle, multi-channel pipette, manifold dispenser or autowasher, and let it sit for 1~2 minutes. Remove the remaining liquid from all wells completely by snapping the plate onto absorbent paper. Repeat 3 times. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against absorbent paper.
5. Add $100 \mu \mathrm{~L}$ of Detection Reagent \mathbf{B} working solution to each well. Incubate for 30 minutes at $37^{\circ} \mathrm{C}$ after covering it with the Plate sealer.
6. Repeat the aspiration/wash process for five times as conducted in step 4.
7. Add $100 \mu \mathrm{~L}$ of Substrate working Solution to each well. Cover with a new Plate sealer. Incubate for 5-10 minutes at $37^{\circ} \mathrm{C}$ (Don't exceed 10 minutes). Protect from light.
8. Measure the chemiluminescence signal in a microplate luminometer or as appropriate for the instrument used.

Note:

1. Assay preparation: Keep appropriate numbers of wells for 1 experiment and remove extra wells from microplate. Rest wells should be resealed and stored at $-20^{\circ} \mathrm{C}$.
2. Samples or reagents addition: Please use the freshly prepared Standard. Please carefully add samples to wells and mix gently to avoid foaming. Do not touch the well wall. For each step in the procedure, total dispensing time for addition of reagents or samples to the assay plate should not exceed 10 minutes. This will ensure equal elapsed time for each pipetting step, without interruption. Duplication of all standards and specimens, although not required, is recommended. To avoid cross-contamination, change pipette tips between additions of standards, samples, and reagents. Also, use separated reservoirs for each reagent.
3. Incubation: To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary. Do not allow wells to sit uncovered for extended periods between incubation steps. Once reagents are added to the well strips, DO NOT let the strips DRY at any time during the assay. Incubation time and temperature must be controlled.
4. Washing: The wash procedure is critical. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining Wash Solution by aspirating or decanting and remove any drop of water and fingerprint on the bottom of the plate. Insufficient washing will result in poor precision and false elevated absorbance reading.
5. For Substrate \mathbf{A} and \mathbf{B}, please protect it from light.
6. Relative light units (RLUs) may differ from different luminometers. The Immunoassay was optimized using a Beijing Hamamatsu luminometer. Other instruments may require settings to be adjusted.
7. Relative light units may vary within the 10 minute reading window.

[TEST PRINCIPLE]

The microtiter plate provided in this kit has been pre-coated with an antibody specific to CNTN1. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated polyclonal antibody preparation specific for CNTN1. Next, Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. Then the mixture of substrate A and B is added to generate glow light emission kinetics. Upon plate development, the intensity of the emitted light is proportional to the CNTN1 level in the

[ASSAY PROCEDURE SUMMARY]

1. Prepare all reagents, samples and standards;
2. Add $100 \mu \mathrm{~L}$ standard or sample to each well. Incubate 2 hours at $37^{\circ} \mathrm{C}$;
3. Add $100 \mu \mathrm{~L}$ prepared Detection Reagent A. Incubate 1 hour at $37^{\circ} \mathrm{C}$;
4. Aspirate and wash 3 times;
5. Add $100 \mu \mathrm{~L}$ prepared Detection Reagent B. Incubate 30 minutes at $37^{\circ} \mathrm{C}$;
6. Aspirate and wash 5 times;
7. Add $100 \mu \mathrm{~L}$ Substrate Solution. Incubate $5-10$ minutes at $37^{\circ} \mathrm{C}$;
8. Read RLU value immediately.

[CALCULATION OF RESULTS]

Average the duplicate readings for each standard, control, and samples and subtract the average zero standard relative light unit (RLU). Create a standard curve on log-log graph paper, with CNTN1 concentration on the y-axis and the RLU value on the x-axis. Draw the best fit straight line through the standard points and it can be determined by regression analysis. Using some plot software, such as curve expert 1.30, is also recommended. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

[TYPICAL DATA]

In order to make the calculation easier, we plot the RLU value of the standard (X-axis) against the known concentration of the standard (Y-axis), although concentration is indeed the independent variable while RLU value is the dependent variable. Further, in this part, in order to help the customer perform the assay more visual, we provide the customer with the raw data (not the log of data). However, plotting log of the data to construct the curve will be recommended. The RLU values of the standard curve may vary according to the conditions of assay performance (e.g. operator, pipetting technique, washing technique or temperature effects). This curve is provided for demonstration only. The customers should establish their own standard curve for each test conducted.

Typical Standard Curve for Mouse CNTN1 CLIA.

[DETECTION RANGE]

$0.156-10 \mathrm{ng} / \mathrm{mL}$. The standard curve concentrations used for the CLIA's were $10 \mathrm{ng} / \mathrm{mL}, 5 \mathrm{ng} / \mathrm{mL}, 2.5 \mathrm{ng} / \mathrm{mL}$, $1.25 \mathrm{ng} / \mathrm{mL}, 0.625 \mathrm{ng} / \mathrm{mL}, 0.312 \mathrm{ng} / \mathrm{mL}, 0.156 \mathrm{ng} / \mathrm{mL}$.

[SENSITIVITY]

The minimum detectable dose of mouse CNTN1 is typically less than $0.042 \mathrm{ng} / \mathrm{mL}$.
The sensitivity of this assay, or Lower Limit of Detection (LLD) was defined as the lowest protein concentration that could be differentiated from zero. It was determined the mean RLU value of 20 replicates of the zero standard added by their three standard deviations.

[SPECIFICITY]

This assay has high sensitivity and excellent specificity for detection of mouse CNTN1.
No significant cross-reactivity or interference between mouse CNTN1 and analogues was observed.

Note:

Limited by current skills and knowledge, it is impossible for us to complete the cross- reactivity detection between mouse CNTN1 and all the analogues, therefore, cross reaction may still exist.

[PRECISION]

Intra-assay Precision (Precision within an assay): 3 samples with low, middle and high level mouse CNTN1 were tested 20 times on one plate, respectively.
Inter-assay Precision (Precision between assays): 3 samples with low, middle and high level mouse CNTN1 were tested on 3 different plates, 8 replicates in each plate.
CV(\%) = SD/meanX100
Intra-Assay: CV<10\%
Inter-Assay: CV<12\%

[STABILITY]

The stability of CLIA kit is determined by the loss rate of activity. The loss rate of this kit is less than 5% within the expiration date under appropriate storage condition.
The loss rate was determined by accelerated thermal degradation test. Keep the kit at $37^{\circ} \mathrm{C}$ for 3 days, and compare RLU values of the kit kept at $37^{\circ} \mathrm{C}$ with that of at recommended temperature. (referring from China Biological Products Standard, which was calculated by the Arrhenius equation. For CLIA kit, 1 day storage at $37^{\circ} \mathrm{C}$ can be considered as 2 months at $4^{\circ} \mathrm{C}$, which means 3 days at $37^{\circ} \mathrm{C}$ equaling 6 months at $4^{\circ} \mathrm{C}$).
Note:
To minimize extra influence on the performance, operation procedures and lab conditions, especially room temperature, air humidity, incubator temperature should be strictly controlled. It is also strongly suggested that the whole assay is performed by the same operator from the beginning to the end.

[IMPORTANT NOTE]

1. Limited by the current condition and scientific technology, we can't completely conduct the comprehensive identification and analysis on the raw material provided by suppliers. So there might be some qualitative and technical risks to use the kit.
2. The final experimental results will be closely related to validity of the products, operation skills of the end users and the experimental environments. Please make sure that sufficient samples are available.
3. Kits from different batches may be a little different in detection range and sensitivity. Please perform the experiment exactly according to the instruction attached in kit while electronic ones from our website (www.uscnk.us; www.uscnk.cn; www.uscnk.com) is only for information.
4. Do not mix or substitute reagents from one kit lot to another. Use only the reagents supplied by manufacturer.
5. Protect all reagents from strong light during storage and incubation. All the bottle caps of reagents should be covered tightly to prevent the evaporation and contamination of microorganism.
6. There may be some foggy substance in the wells when the plate is opened at the first time. It will not have any effect on the final assay results. Do not remove microtiter plate from the storage bag until needed.
7. Wrong operations during the reagents preparation and loading, as well as incorrect parameter setting for the plate reader may lead to incorrect results. We recommend using a single-mode luminometer or a multi-mode detection instrument set for luminescence measurement to measure light emission from 96-well microplates.
8. Even the same operator might get different results in two separate experiments. In order to get better reproducible results, the operation of every step in the assay should be controlled. Furthermore, a preliminary experiment before assay for each batch is recommended.
9. Each kit has been strictly passed Q.C test. However, results from end users might be inconsistent with our in-house data due to some unexpected transportation conditions or different lab equipments. Intra-assay variance among kits from different batches might arise from above factors, too.
10. Kits from different manufacturers with the same item might produce different results, since we haven't compared our products with other manufacturers.
11. Valid period: six months.
12. The instruction manual also suits for the kit of 48 T , but all reagents of 48 T kit are reduced by half.
